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Abstract  

Using the framework of the quantum field theory it is proved that the possibility exists 
of performing--within binary description formalism--a suitable space-time quantisation. 
In this respect the mutual connection between the action quantisation and the space-time 
quantisation has been established. 

1. Introduction 

Within the framework of the quantum field theory attempts have been 
made to define space-time position states and operators (Schrtder, 1964; 
Broyles, 1970). However, up to now no consistent approach to the field- 
theoretical space-time quantisation problem has been explicitly formulated. 
In this respect we shall prove that the possibility exists of performing a 
suitable field-theoretical space-time binary description. This description is 
able to support the existence of the binary space-time entities previously 
analysed (Papp, 1971-1973). The quantum character of the above-mentioned 
description will also be stated, thus pointing out the mutual connection 
between the requirements of the action quantisation and the 'objective' 
existence of the non-zero time imprecision. For this purpose the usual 
meaning of the action quantisafion, consisting of the statement of Planck's 
constant as the minimum action encountered in nature, will be extended. 
In order to define the time operators, certain boundary conditions are im- 
plied. In these conditions the present binary time operators and also the 
hermiticity property will be mathematically defined only with respect to a 
subspace of the whole Hilbert space. As in previous papers (Papp, 1971- 
1973) such formalism is not to be considered as a rejection, but as an 
extension of Neumann's axiom (von Neumann, 1932). 

Using the configuration space method and assuming in agreement with 
Wightmann & Schweber (1959) and Schr/Sder (1964), the validity of the 
simple particle interpretation, the binary space-time operators of the non- 
relativistic Schrtdinger (S)-field and of the relativistic Klein-Gordon 
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(K-G)-field are defined within the vector space description in Sections 2 and 
4 respectively. The space-time compatibility is analysed in Section 3. In 
Section 5 it is shown that--at a given value of the angular momentum (and 
especially at 1 = 0)--the radial space operator and the corresponding time 
operator may be adequately defined, as in the quantum-mechanical case, 
only at large t-values. The averages of the above field-theoretical space-time 
operators turn out to be identical with the usual quantum-mechanical 
space-time averages. Finally the mutual connection between action quanti- 
sation and the space-time quantisation is analysed in Section 6. 

We shall work with the units for which h = c = 1 and we shall consider, 
for simplicity, only the single particle states of the S- and K-G-field. 

2. The Space-Time Operators of the S-Field 

As in the quantum-mechanical case we shall define the space and time 
operators by means of their canonical conjugacy with momentum and energy 
respectively. With these conditions defining the space operator as 

X(t) = f dx ¢*(x, t)x ~9(x, t) (2. 1) 

where the S-field operator is given by 

f p2 ~k(x, t) = (2~) -3/2 dp a(p) exp i ~ . x  - •t), co = 2--m (2.2) 

we obtain 
, .~  

The above vectorial space operator represents a set of three reciprocally 
commuting coordinate space operators {Xi(t)}. These components are 
conjugated to the corresponding components of the momentum operator. 
The hermiticity of the space operator X(t) is assured as soon as the operator 
a(p) vanishes at infinity. 

We shall consider that the above condition is generally fulfilled. Within the 
quantum field theory the canonical conjugacy preserves quantum- 
mechanical sense only with respect to the single particle states. Conversely, 
effective space and time operators per particle have to be defined. In the 
latter case the field-theoretical space-time description corresponds to the 
quantum-mechanical space-time description of a system of free identical 
particles. 

If the classical time of the evolution along the xl-axis is given by xl/vl, 
in the quantum-mechanical case we may consider--by virtue of the corre- 
spondence principle--the operators xl ~i -1, ~~xl  and respectively ½(x~ ~-x + 
071xl), where the velocity operator is given by 

1 i 0 (2.4) 
Oxl mo- mo 
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so that 

z3~l exp ip. x = - - (Pi Y i  exp/p.x (2.5) 
\mo/ 

Without performing a detailed mathematical analysis of the existence of 
the operator fJ~l==-v~l, which was rather formally used, we can simply 
remark that in this way the existence of a singularity at pl = 0 is implied. 
Performing the calculations and assuming that 

lim p~i f dp2 dp 3a*(p)a(p) < at (2.6) 
p 1--->0 

where the limit has to be considered in the weak sense, it may be proved that 
the field-theoretical counterparts of the above time operators are given by 

rl(,> = f a p  F,m°-~- .mo] 
[ Pl 0Pi + t - l~12 a(p) (2.7) 

.rot 0 
Ti' (t) = Tl*(t) = f dpa*(p)[z~- 1 O-~, + t ]a(p) (2.8) 

and the hermitian operator 

T~*'(t) = f dpa*(p)[i m°O .mp.,_g] 1_ Pl ~P-~l + t - ,  a(p) (2.9) 

respectively. The boundary conditions (2.5)--which state mathematically the 
time description only with respect to a Hilbert subspace--are needed in 
order to remove the singularity previously mentioned. With this condition 
the consistency requirement of the mathematical description is assured. 
The existence of the two quantum mechanical time operators Tl(t) and 
Tl'(t) # T,(t) is in fact an expression of the canonical space-momentum 
conjugation, i.e. of the impossibility of precisely measuring both space 
and momentum. One can easily ascertain that the time operators T,(t), 
(Ti*(t)) may be obtained by adding to (subtracting from) the hermitian 
time operator the operator: 

i ( '  m o ,  
J dp~-~ a (p) a(p) (2.10) 

Because the hermitian part of the binary time operators T~(t) and T**(t) 
is identical with the hermitian time operator T~*)(t), it may be concluded that 
the operator T~ plays the role of the imprecision operator of the time measure- 
ment. One may therefore infer that the quantum-mechanical time cannot be 
measured without an 'objective' non-zero time imprecision. The existence of 
this imprecision explains the existence and the meaning of the binary time 
operator. Consequently, the real and imaginary part of the Tt(t) or Tl*(t) 
average may be defined as 'observable' evaluation and imprecision of the 
time measurement, respectively. In this situation we can affirm that the time 
quantisation consists essentially of the definition and interpretation of the 
binary time operator. 
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Obtaining the average value of the binary time operator Ti(t) with respect 
to the single particle state 

I ~ )  = f dpg~)a*(p)10) (2.11) 

it may easily be proved that the imprecision previously introduced of the 
time measurement is given by 

( m o ~  mo 
(~plllll~bl) = = dP2p---~Ig(p)i2 (2.12) 

where the state l~bl) has been normalised to unity. The imprecision so 
obtained agrees with the one previously obtained in the quantum mechani- 
cal case (Papp, 1971). 

The field-theoretical counterparts of the free evolution times along the 
x2- and x3-coordinate axis may be similarly evaluated as soon as 

lim p-~l fdpldp3a*(p)a(p) < (2.13) 
p2-->O d 

and respectively 
lim p~  f dpldp2a*(p)a(p) < ~ (2.14) 

p3--+O 

The time operators so obtained commute so that the above 'three-dimen- 
sional' time entity {Ti(t),i = 1,2,3} may be reduced to a one-dimensional 
entity. For this purpose the measuring apparatus, which includes (in agree- 
ment with Broyles (1970)) the reference frame, has to be chosen so that the 
direction of the free motion becomes identical to that, e.g., of the xl-axis. 

Obtaining the average value of expressions (2.6), (2.13) and (2.14) with 
respect to the state [~q), one gets the boundary conditions 

lim p-i 1 f dp~dPklg(p)l z < 0% i # j # k  (2.15) 
p~--~O 

Without affecting generality, we may consider that the above boundary 
conditions are satisfied only when--up to a phase factor--the factorisation 
property 

g(,P) = g~(P~) g2(P2) g3(P3) (2.16) 
is assumed, where 

lim P-(~g~(Pl) < ~, i = 1, 2, 3 (2.17) 
pi--+O 

The above factorisation property signifies that the field-theoretical 
counterparts of the free evolution times along the xl-, x2- and xa-axis 
cannot be defined without assuming the mutual independence property of 
the corresponding free evolution processes. Consequently, the factorisation 
property, which expresses in fact an initial condition needed to perform 
the present quantum-mechanical time description, may be re-obtained (as 
one would expect) in terms of the consistency conditions of the proposed 
mathematical description. 
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Starting from the binary time operator Ta(t), we may subsequently define 
the binary space operator corresponding to the xl-coordinate as 

X~b'(t)=f dpa*(p)[i~+tP~-2]a(P)mo (2.18) 

Contrary to the time imprecision (moi2plZ), which always takes non-zero 
values, there are cases in which the space imprecision (li2p~) vanishes-- 
e.g. when g(p) is either an even or an odd function of the variablep~. There- 
fore the binary space-time description does not generally take a symmetric 
form with respect to space and time. 

3. Space-Time Compatibility 

In order to assure the possibility of the space-time description previously 
performed fulfilment of the space-time compatibility requirement is needed. 
Indeed time has been defined with respect to space. We shall formulate the 
binary space-time compatibility conditions requiring in agreement with the 
binary interpretation formalism (K~ilnay & Toledo, 1967; Papp, 1973), 
that the average of the commutator does not possess (a well-defined or an 
'undetermined') measurable meaning. The binary space-time compatibility 
refers not only to the pairs of binary operators but also the mixed hermitian- 
binary pairs. 

Thus, in the one-dimensional case, the compatibility between binary 
space and binary time is assured under the conditions 

IRe<¢d[X~b)(t),T~(t)]14q>l<~llm<¢d[X~b)(t), Z~(t)]l¢l> (3.1) 

where account has been taken of the peculiarities of the binary description 
formalism. As 

, rmo 0 

the condition (3.1) becomes 

3too i t ]  
2p12 ~ a(p) (3.2) 

i .< mo 0 t 
mo [ (2-~1 a~ "~ (~i2 ~-~pl arg g(P) - p-~i~ (3.3) 

We notice that space-time compatibility is particularly assured when 
(1/2pl 3) = 0. But considering the general case, and assuming for simplicity 
that the function (1/pl2)/(a/ap~)argg(p) covers the relatively narrow domain 
in which I g(p)] 2 takes appreciable values, condition (3.3) becomes, within a 
certain approximation, 

1 m o o  argg(p) -- t )  ] 0.4) 
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where the factor 1/pl has been extracted. It may be easily proved that the 
inequality (3.4) is fulfilled as soon as either 

o r  

t>~mog/l O-~-argg(p)~+~p°12 (3.6) 

take place. Consequently, substituting the macroscopic time parameter t 
by the time interval 

It -- ~2~1°2~, t + ~1°2~]  (3.7) 

inequality (3.4) is satisfied. Consequently the compatibility of the binary 
space and time is assured as soon as time gets a binary meaning, with the 
imprecision given by (mo/2p12). Setting t = 0 it may be easily proved, by 
virtue of relation (3.4), that space-time compatibility is also assured when 
one confers measurable meaning on the time-shift evaluation 

m° 0 argg(p)~ 

It may be proved that the compatibility between binary space Xt~b)(t) 
and hermitian time T~*)(t) may be satisfied under the same conditions as 
before. The compatibility of the hermitian space operator X(t) with the 
binary time requires a doubly larger imprecision than the previous one, 
namely the time imprecision (mo/p12). But introducing the concept of 
extended binary 'equivalence', the binary evaluations with the imprecision 
(mo/pl 2) may be included in the same 'equivalence' class as the previous 
ones .  

It is worthwhile mentioning that the time imprecision introduced in the 
above-mentioned manner is identical with the imprecision operator average. 
This last fact constitutes an expression of the inner consistency of the binary 
space-time description. 

4. The Space-Time Description of the K-G Field 
In the relativistic case there are some additional difficulties arising from 

the relatively more complicated functional dependence between energy, 
momentum and velocity. Defining, in agreement with Schrtder (t964), 
the space operator as 

X(t) = i f dx #'+'*(x, t)0~ x #'+'(x, t) (4.1) 

where the K-G-field operator is given by 

3:2 t" dp 
#t+'fx, t) = (2~)- --I ~ j  at+)fP) exp i(p.x -- Pot), 

Po = ~/(.p2 + mo 2) (4.2) 
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one obtains the hermitian operator 

X(t)=f dpa'+)*(~)[iS~+t~o]a<+)(p ) (4.3) 

when the annihilation operator a°~°(p) vanishes at infinity. The components 
of the above vector space operator commute so that the unequivocality 
of the space description is assured. However, the situation is more compli- 
cated in the case of the time description. 

Calculating the field-theoretical counterparts 

Tl(t) = i f dx ~(+)*(x, t) O, xl ~]-I ~(+)(x, t) (4.4) 
and 

i f dx ~(+)*(x, t) 0, D71 xl ~(+)(x, t) (4.5) /'1 ' ( t )  

of the quantum-mechanical time operators xl~3i -~ and D~-axx, where the 
velocity operator takes the form 

O O -i 

we obtain, assuming the validity of the boundary condition 

f dp (4.7) limp71 2dpapo a~+)*(,P)a~+)(P) < co 
pl'~O 

(where as previously the limit has to be considered in the weak sense), the 
results: 

+ ,  .Pc 0 z 2 z T,(t)=fdpa() (p)[t_~l~_~pi+t_imo +P2 +Pall  _1 #+)(P) (4.8) 

and 

respectively, Therefore, the hermitian time operator is given by 

T~*)(t) = L Pl opx ' 2~op~ -j a'+)(p) (4.10) 

when condition (4.7) is fulfilled. 
The time operators T2(t) and Ta(t) corresponding to the free evolutions 

along the Xz- and x3-axis may be similarly evaluated. Contrary to the non- 
relativistic case the time operators Tl(t), T2(t) and Ta(t) do not commute. 
Indeed 

[ 1 0 1 0 1 1 ] p 1 0 p ~  Pz OP2 P22 P-1 [Tt(t), T2(t)] = f do a<+)*(P) q a(+)(p) (4.11) 

8 
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and a similar result follows in the other cases. Averaging the above commut- 
ator with respect to the single particle state 

t~+)) = f dp g~+)(p)a~+)*(p)[0) (4.12) 

where/ai~+)las~+),, - 1, we obtain the result \ u r  1 }':t- 1 / - -  

I 1 
(~(l+){[Tl(t), T2(t)],~b(l+)) = ~ ( ~ z  2 1 2 )  

i / [  1 0 _ _ argg'+'(p) (4.13) 
+ p20p2 

The commutation condition of the time operators is thus assured (in 
the weak sense) if 

( ~ 2 )  = ( ~ )  = ( ~ 2 )  (4.14) 

and also 

1 0  + 1 0 + 1 0 
( ~ p ~ p  argg ( ) ( p ) ) = ( ~ - p p 2 a r g g  ( ) (p ) )= (~p~p3a rgg '+ ' (p ) )  (4.15) 

where the single particle amplitude obeys the boundary conditions 

lim p?l f dpjdpklg(+)(p)12 < 0% i # j C k  (4.16) 
pl-+O 

But in order to fulfil conditions (4.14)-(4.16) we have to impose the 
factorisation property 

= 

where 
g~+) = g(z+) = g~+) 

and where 

(4.17) 

(4.18) 

(4.19) lira pT, ÷ g~{)(pi) < % i = 1, 2, 3 
p u - ~  

Consequently the above time description of the relativistic K-G-field may 
be unequivocally defined only in the one-dimensional case. Indeed the three- 
dimensional vectorial description possesses--by virtue of conditions (4.17)- 
(4.18)--a purely formal meaning and reduces effectively to a one-dimensional 
description. In this respect the time description of the relativistic K-G-field 
is, in the main, more restrictive than the case of the non-relativistic field. 

Neglecting condition (4.15), relations (4.17) and (4.18) remain valid 
only up to a phase factor. This is the situation when the condition of binary 
time compatibility is imposed. Indeed, the binary time compatibility is 
always fulfilled as soon as the relations (4.14) are satisfied as well as relations 
(4.16). In this respect, excepting non-significant situations, we may consider 
that the binary time compatibility condition is essentially expressed by 
means of relation (4.14) and vice versa. 

The present relativistic one-dimensionality requirement becomes manifest 
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in the case of the Dirac electron-field. Performing the evaluation of the space 
operator 

X(t) = f dx Z*(x, t) x ;((x, t) (4.20) 
where 

dn /m°,,(+)tn s~b(+)En s~ f Z(x, t)  = (2~z) -3/z 5" 2 exp i(p " x - po t) (4.21) ° . . ,  

expresses the Dirac electron-field operator, we obtain the standard form of 
the space operator: 

a 
X(t )=~fdpb(+)*(p ,s )[ i~+t~o]b(+)(p ,s )  (4.22) 

only when the relation 

u(+)*(n sq a u(+)(n s5 = ~ P  6~, (4.23) 
u-, "ap "~" ~ 2moPo s 

where u(+)(p,s) expresses the positive energy spinor, is used. But this relation 
is valid only in the one-dimensional case. In this latter case the spinor 
u(+)(p,s) has to be defined only by means of a special Lorentz transformation 
(see e.g. Bjorken & Drell, 1965). 

Similarly, in the non-relativistic case we may analyse the conditions under 
which binary space-time compatibility in assured. Taking into consideration 
the one-dimensional case and defining the binary space operator as 

X(lb)(t) = f dp a (+) * (P) It ~.-:7-LC,pll-" 0 + tPlpo -- i 2P~ po2j -m°z--] a(+)(n'~,.v, (4.24) 

we obtain 

z /  i a i _ L t  
=mo kpopiZ~plargg'+)(p)- PiP° z 

1 1 )  
2p~3po + 2-~o~ (4.25) 

wherepo = ~/(pl z + moZ). By performing the calculations, it may be proved 
that the compatibility of the binary space and binary time is assured when 
the time has a binary meaning with the imprecision given by (moZ/2poplZ). 
The imprecision thus obtained is identical with the imprecision operator 
average. The compatibility between the hermitian space operator Xl(t) 
(binary space operator X~b)(t)) and the binary time operator Tl(t), (hermitian 
time operator Tl*)(t)) is assured if time is considered as a binary entity with 
imprecision 

Pi"  

Using extended binary 'equivalence' it may be proved that the last impre- 
cision is 'equivalent' to Ne real time imprecision <moZf2plZpo) only when 
(v~) ~ c/2, whereas the first imprecision is 'equivalent', for example to the 
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i m p r e c i s i o n  ((po/2pt 2) -~ (1/4po)). The existence of such an imprecision 
'transfer' may be interpreted as an expression of the non-existence of a 
quantum-mechanical space-time symmetry. 

5. The Spherical Symmetric Approach to the Space-Time Quantisation 
We have proved that in order to unequivocally define the field-theoretic 

time for the K-G-field, the fulfilment of certain conditions is needed. As we 
shall see, the relevant peculiarities of the one-dimensional description may be 
reproduced in conditions under which the existence of a rotation symmetry 
of the field operators is assumed. 

In these conditions the annihilation operator and the field operator may 
be expanded as spherical harmonics as follows: 

=p-' E r, o [P%a'+"°' (5.0 
' ~ p k  ] ' " "  

and 
k . x  ( )  ~(+)(x,t)=r-l ~ Y,.o(-~-r )~,+ (r,t ) (5.2) 

respectively, where k/k is the unit vector in the direction of the symmetry 
axis and where r = lxl. Using the expansion 

expip.x=~ i ' V ' ~  l) (5.3) 

and the well-known properties of spherical harmonics one obtains the 
p-momentum representation of the K-G-field corresponding to a well- 
defined value of the angular momentum as: 

oo 

(~+)(r,t)=(2)rf~j,(pr)a~+)(p)exp(-ipot) (5.4) 

0 

where the commutation relation now takes the form 

[a~+>(p), a},+~*(p3] = ~v~ ~(p'  - p)  (5.5) 

Defining, for the moment, the radial space operator by means of the re- 
lation 

R(~)(t) = i f dr ~+)*(r, t) at r ~+)(r, t) (5.6) 
0 

and using the relation 
oo ] d 1 

fo dr rajt(p ' r)j,(pr)= p~ipPpg p,Z (5.7) 
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which is valid only for 1 = 0 and 
t 

lim ~ P  1,expi(po'-po)t=-izc~(P2;P) (5.8) 
t~+co p - t - p  p - p  

we may conclude, having already performed the calculations, that the space 
operator may be adequately defined only at large t-values. Indeed 

® (+),  F d t p ] 
~(z)(t)-  lim R"'(t)=fdpa t (p)[i~pp+ poja~+'(P) (5.9) 

t--++~ O 

where for the moment I = 0. But using the asymptotic field 
co 

¢~+'(r,t) = ~+limco~b~+'(r't) = ~/-~rc)-i f ~a~+,(p)expi(pr_pot)  (5.10) 
O 

where only the dominant contribution has been maintained, and rede- 
fining the space operator as 

CO 

~m(t) = i f  dr~+)*(r, t) Ot r ~+~(r, t) (5.11) 
O 

it may be proved that expression (5.9) maintains its validity with respect 
to any value of the angular momentum. The space operator so obtained is 
an hermitian one when the annihilation operator a~+)(p) vanishes at zero 
and infinity. 

It may also be easily proved that the field-theoretic counterpart 
0o 

~--m(t) = i f dr ~+)*(r, t) rfi -1 ~+)(r, t) (5.12) 
0 

of the quantum-mechanical time operator r~ -~, where 

= - N ( 5 . 1 3 )  

expresses the velocity operator, is given by 

y~,u'~(t)= dpai<+>*,p),i~-~, + t - i  al+>(p) (5.14) 
o L ~o z, z, oa 

when 
lim p-ltZa~+)(p) = O, lim a[+)(p) = 0 (5.15) 
P--+O p--->¢~ 

where the weak limit has been considered. 
The above conditions also expressed the requirements needed in order to 

define the hermitian time operator 

9-,,x*,(t)= ~dva~+)* n][i d__d_+t_i mo2 ],,,+,tn~ (5.16) 
• - ' ( - L @ o  2p pol =' J 
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If we were trying to define space with respect to time, then unsatisfactory 
dynamical expressions would be obtained. Indeed the field-theoretical 
counterpart of the presumptive quantum-mechanical 'space' operator t~ 
takes the form 

fdp a~+)*(p) t + - i m°']a(+)(p' (5.17) 
o 2po z ppo2J t : 

which only apparently possesses the dynamical meaning of a real space 
operator. 

Consequently if time may be defined in respect with space, the converse 
way of defining space with respect to time generally is not possible. For this 
purpose the existence of a time representation placed on the same footing 
as the space coordinate representation would be required. If in the non- 
relativistic case such a representation could be defined (see e.g. Gien, 1969), 
there arise, appreciable difficulties in defining a time-representation within 
relativistic quantum-field theories. 

Similarly to the one-dimensional case, we may define the binary space 
operator as 

[ d  2 
• mo (+) ~ ) ( t ) = f  dpa~+)*(p) i~p+tP-P--,~7_2]a , (p) (5.18) 

o Po zppo A 
Starting from 

2 i d ( _ .  t m°2 \ (5.19) 
= mo (p--~o-~parggz+)(P) Zppo2 2~og/z  

where the single-particle state is now given by 
e o  

f dpg~+)(p) a~+~*(p)[O) (5.20) 
0 

it may be proved that binary space-time compatibility is assured under the 
conditions in which time is considered as a binary entity with imprecision 
given by (moZ/2p2po}~. As expected, this imprecision is identical with the 
imprecision operator average and also with the real time imprecision pre- 
viously obtained (Papp, 1972). 

Summarising the results of Sections 4 and 5 we may conclude that, for 
the K-G-field, the present time quantisation may be consistently and unequi- 
vocally performed only with respect to the one-dimensional cases or under 
the conditions in which the p-momentum representation of the K-G-field 
may be defined. 

6. Action and Space-Time Quantisation 
In order to prove the mutual connection between the space-time quantisa- 

tion previously performed and the action quantisation we shall firstly define 
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the binary action operators. It may be remarked that the binary action 
description expresses in fact--in a more extended sense--the usual peculi- 
arities of the action quantisation. Finally we obtain the result that we cannot 
attribute a measurable meaning to the action without attributing to time 
(up to binary 'equivalence') the previously defined binary meaning and vice 
versa. 

Calculating in the non-relativistic case the field-theoretic counterparts 
of the classical actions pr, pr - cot and a~t we obtain that the field-theoretical 
binary action is--up to the factor 2 ~ unequivocally defined. Thus the field- 
theoretic counterpart of the quantum-mechanical action r/~, where p = 
-i(d/dr), is given by 

f , d z A~Z)(t) = dpat (p) ip~-~+t +i  az(p), ( t ~ + o ~ )  (6.1) 
o 

where the p-momentum representation of the S-field has been used. In 
these conditions it may be easily proved that the action imprecision is 
given by universal constant hi2. On the other hand we may consider, in 
agreement with the basic assumptions of quantum mechanics, that hi2 
expresses the minimum 'observable' value of the action encountered within 
the multitude of quantum-mechanical objects. Considering the role of the 
measuring apparatus, we may assume that the action values smaller than h/2 
lose any observable meaning. Thus, the physical meaning of the action 
quantisation agrees with that of the binary formalism. In this way we are 
able to legitimise the binary interpretative formalism as a general quanti- 
sation-methodology. 

The average value of the non-relativistic action is given by 

d p2 
(~(~°tA~')(t)I~(~°) = (--p ~parggL(p) + t ~ o  + 2~ ~ (6.2) 

where the single-particle state 
eo 

l ~  °) = f dp g,(p) aL*(p)t0) (6.3) 
0 

has been normalised to unity. Consequently the non-relativistic action pos- 
sesses a measurable meaning when time possesses a binary meaning with the 
imprecision given by (1/4co)t (Papp, 1971). Thus, time quantisation is able 
to assure a measureable meaning of the action and vice versa. 

In the relativistic case the uniqueness of the field-theoretic action 
operator ceases to be preserved. Starting from the classical actions pr, 
p r - p o t  and pot we may define the corresponding quantum-mechanical 
operators as 

d 
al = ip ~ (6.4) 
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and 

.mo 2 d 
dlz = - t - - -  (6.5) p a p  

d2 = i p°2 d p dp (6.6) 

respectively, where the p-momentum representation has been used. The 
field-theoretical counterparts of the above operators are given (for t-+ + oo) 
by 

(+~* LF -clpd tpoP2]J = a~+)(p) (6.7) fapa, + 
0 

f ,+,, _mo e tm°"]a~+)(p) (6.8) Ai~*(t)=~ dpaz (p) ~ p dp Po J 
0 

and 

A(1~*(t) = dp a~+)*(p) +pot a~+)(P) 
o L P T  

respectively. Consequently 

o)(+)(t) A.)* t (+)(t) _ d r (+)() t p2 
( ~  t 1 ( ) ' ~ l ) - ( - p ~ p a g g ,  .P .+  ~oo--~) t 

i 

(~b(l+~c~)rAi~2),(t)f~?~,~) = (  mo @ arggz+ (p) _ ~ ~ mo z .mo2\ 

and 

\ 

(6.9) 

(6.10) 

(6.11) 

, P°2 argg}+)(p) + Pot + t rn P. 
p a p  t 

(6.12) 

Under these conditions, using the previously defined methodology, 
the action imprecisions may be defined as 

1 / too2\  l? /m°2-P2\ t  (6.13) ~, \~pp2/I and \ ~-~ / t [  

respectively, so that the implied time imprecisions become 

(po \ ,  /m:-p2\ t 
2PZ/, ( ~ ) z  and [ \ ~-~2-~o / i  ] (6.14) 

respectively. Therefore, in the relativistic case, only the w-action operator 
possesses the usual imprecision hi2. In spite of the heterogenous form of the  
action imprecisions, previously calculated the total time quantum(po/2p2)t, 
preserves its uniqueness with respect to the pr and ( p r - p o t )  actions. 
However, some aspects of the meaning and the role of the pot action im- 
precision, need additional investigation. 
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Consequently, if in the nonrelativistic case the space-time quantisation and 
the action quantisation may be straightforwardly connected, in the relativ- 
istic case--besides the presence of some additional dit~culties--such a con- 
nection cannot be established without using extended binary 'equivalence.' 

7. Conclusions 

In this paper some methods assuring the possibility of performing a 
suitable binary space-time description within quantum field theory have 
been analysed and clarified. In this way a more profound understanding 
of the peculiarities of the space-time description was acquired. We can 
remark that space and time cannot be placed on the same footing. This 
fact itself could be able to affect some usual aspects attributed to the 
relativistic four-dimensional space-time world. On the other hand not all 
the inertial reference frames are "microscopically" equivalent. Indeed, in 
order to perform the present space-time quantisation the proper-system 
was excluded (together with a certain 'vicinity' of frames in which the 
momentum takes very small values) and the reference frames in which 
the momentum takes very large values were also excluded. However, the 
compatibility between the present formulation of the space-time quanti- 
sation and the general requirements of Lorentz covariance is "microscop- 
ically" preserved, because it is the proper-time whichismeasured inrespect 
to the proper-system. On the other hand, if we assume that the measuring 
apparatus includes a reference frame, some inconsistencies connected with 
the standard requirements of Lorentz covariance would be implied. Indeed, 
passing from one reference frame to another one, several apparata are implied 
and therefore--because the imprecisions previously defined are not Lorentz 
invariant--they are apparata with several imprecisions. In this respect 
the aim to include results obtained by using several apparata in the same 
'equivalence' class is submitted to certain limitations at least under the 
conditions in which the implied imprecisions take appreciable different 
values. We may also remark that, in contrast to the invariance of the action 
p~xl - p o t  with respect to the special Lorentz transformation, the 'quantis- 
ation' of the above action leads to the imprecision (moZ/2p~2), which is not 
a Lorentz-invariant quantity. 

References 

Schrrder, U. E. (1964). Annaten derPhysik, 14, 91. 
Broyles, A. A. (1970). Physical Review, D1,979. 
Papp, E. (1971). Nuovo Cimento, 5B, 119. 
Papp, E. (1972). Nuovo Cimento, 10B, 69. 
Papp, E. (1973). International Journal of Theoretical Physics, 8, No. 5 
Neumann, J. v. (1932). Mathematisehe Grundlagen der Quantenmeehanik. Springer- 

Verlag. 
Wightmann, A. S. and Schweber S. S. (1965)Physical Review 98 812. 
K~ilnay, A. J. and Toledo B. P. (1967) Nuovo Cimento, 48A, 997. 
Bjorken, J. D. and Drell, S. D. (1965) Relativistic Quantum Fields. McGraw-Hill. 
Gien, T. T. (1969) Canadian Journal of Physics, 47, 279. 


